Theorem 1: \pi(2^k) \le 3\dfrac{2^k}{k}
(1) For k \le 5:
\pi(2^1) = 1 \le 2\dfrac{2^1}{1} = 4
\pi(2^2) = 2 \le 2\dfrac{ 2^2}{2} = 4
\pi(2^3) = 4 \le 2\dfrac{2^3}{3} = \dfrac{16}{3} > 5
\pi(2^4) = 6 \le 2\dfrac{2^4}{4} = 8
\pi(2^5) = 11 \le 2\dfrac{2^5}{5} = \dfrac{64}{5} > 12
(2) Assume it is true up to some k \ge 5
(3) \pi(2n) - \pi(n) \le (2n)\dfrac{\log 2}{\log n} since:
(a) 2^{2n} = \sum\limits_{i \le 2n}{{2n}\choose i}
(b) n^{\pi(2n) - \pi(n)} \le p^{\pi(2n) - \pi(n)} \le \prod\limits_{n < p \le2n}p \le {{2n}\choose{n}} \le 2^{2n}
(c) (\pi(2n) - \pi(n))\log n \le (2n)\log 2
(d) \pi(2n) - \pi(n) \le (2n)\dfrac{\log 2}{\log n}
(4) \pi(2^{k+1}) - \pi(2^k) \le (2^{k+1})\dfrac{\log 2}{\log 2^{k}} so that \pi(2^{k+1}) \le \pi(2^k) + (2^{k+1})\dfrac{\log 2}{\log 2^{k}}
(5) \log 2^{k} = k\log 2 so that \dfrac{1}{k} = \dfrac{\log 2}{\log 2^{k}}
(6) 5k+5 < 6k so that \dfrac{5}{k} < \dfrac{6}{k+1}
(7) \pi(2^{k+1}) \le \pi(2^k) + \dfrac{2^{k+1}}{k} \le \dfrac{3\times2^k}{k} + \dfrac{2\times2^k}{k} = \dfrac{5\times2^k}{k} \le \dfrac{3\times2^{k+1}}{k+1}
Corollary: \pi(x) \le 6 \log 2 \dfrac{x}{\log x}
(1) For x \le 4, \pi(x) \le 6\log 2 \dfrac{x}{\log x}
\pi(2) = 1 \le 6\log2\dfrac{2}{\log 2} since \log 2 < 12\log 2
\pi(3) = 2 \le 6\log 2\dfrac{3}{\log 3} since 2\log 3 < 18\log 2
\pi(4) = 2 \le 6\log 2\dfrac{4}{\log 4} since 2\log 4 < 24\log 2
(2) There exists k such that 2^k \le x \le 2^{k+1}
(3) \dfrac{1}{k+1} < \dfrac{\log 2}{\log 2^{k}} since \log 2^k < (k+1)(\log 2)
(4) \pi(x) \le \pi(2^{k+1}) \le 3\dfrac{2^{k+1}}{k+1} \le 6\dfrac{2^{k}}{k+1} < 6\log 2\dfrac{2^k}{\log 2^k} \le 6\log 2\dfrac{x}{\log x}
Let v_p(n) be the maximum power of p that divides n
Lemma 1: v_p(n!) = \sum\limits_{m \ge 1}\left\lfloor\dfrac{n}{p^m}\right\rfloor
There are \left\lfloor\dfrac{n!}{p}\right\rfloor instances of numbers divisible by p.
There are \left\lfloor\dfrac{n!}{p^2}\right\rfloor instances of numbers divisible by p^2
And so on.
Lemma 2: \lfloor{2x}\rfloor - 2\lfloor{x}\rfloor \in \{0, 1\}
(1) Let \{x\} be the fractional part of x
(2) If \{x\} < \dfrac{1}{2}, then \lfloor{2x}\rfloor - 2\lfloor{x}\rfloor = 0
(3) If \{x\} \ge \dfrac{1}{2}, then \lfloor{2x}\rfloor - 2\lfloor{x}\rfloor = 1
Theorem 2: \pi(x) \ge \dfrac{\log 2}{2}\dfrac{x}{\log x}
(1) If m > \dfrac{\log 2n}{\log p}, then \left\lfloor\dfrac{2n}{p^m}\right\rfloor - 2\left\lfloor\dfrac{n}{p^m}\right\rfloor = 0
(2) v_p\left({{2n}\choose{n}}\right) = \sum\limits_{m \ge 1}\left(\left\lfloor\dfrac{2n}{p^m}\right\rfloor - 2\left\lfloor\dfrac{n}{p^m}\right\rfloor\right) \le \left\lfloor\dfrac{\log 2n}{\log p}\right\rfloor
(3) \dfrac{2^{2n}}{2n} \le {{2n}\choose{n}}
(4) 2n\log 2 - \log 2n \le \log {{2n}\choose{n}} \le \sum\limits_{p \le 2n}\left\lfloor\dfrac{\log 2n}{\log p}\right\rfloor\log p \le \sum\limits_{p \le 2n}\log 2n = \pi(2n)\log 2n
(5) \pi(2n) \ge \log 2\dfrac{2n}{\log 2n} - 1
(6) For 2 \le x \le 16, \pi(x) \ge \dfrac{\log 2}{2}\dfrac{x}{\log x}
- \pi(2) = 1 = \dfrac{\log 2}{2}\dfrac{2}{\log 2} = 1
- \pi(3) = 2 > \dfrac{3}{2} > \dfrac{\log 2}{2}\dfrac{3}{\log 3}
- \pi(4) = 2 = \dfrac{4}{2} > \dfrac{\log 2}{2}\dfrac{4}{\log 4}
- \pi(5) = 3 \ge \dfrac{5}{2} > \dfrac{\log 2}{2}\dfrac{5}{\log 5}
- \pi(6) = 3 = \dfrac{6}{2} > \dfrac{\log 2}{2}\dfrac{6}{\log 6}
- \pi(7) = 4 > \dfrac{7}{2} > \dfrac{\log 2}{2}\dfrac{7}{\log 7}
- \pi(8) = 4 = \dfrac{8}{2} > \dfrac{\log 2}{2}\dfrac{8}{\log 8}
- \pi(9) = 4 > \dfrac{3}{2} = \dfrac{\log 2}{3\log 2}\dfrac{9}{2} > \dfrac{\log 2}{2}\dfrac{9}{\log 9}
- \pi(10) =4 > \dfrac{5}{3} = \dfrac{\log 2}{3\log 2}\dfrac{10}{2} > \dfrac{\log 2}{2}\dfrac{10}{\log 10}
- \pi(11)=5 > \dfrac{11}{6} = \dfrac{\log 2}{3 \log 2}\dfrac{11}{2} > \dfrac{\log 2}{2}\dfrac{11}{\log 11}
- \pi(12)=5 > 2 = \dfrac{\log 2}{3 \log 2}\dfrac{12}{2} > \dfrac{\log 2}{2}\dfrac{12}{\log 12}
- \pi(13)=6 > \dfrac{13}{6} = \dfrac{\log 2}{3 \log 2}\dfrac{13}{2} > \dfrac{\log 2}{2}\dfrac{13}{\log 13}
- \pi(14)=6 > \dfrac{7}{3} = \dfrac{\log 2}{3 \log 2}\dfrac{14}{2} > \dfrac{\log 2}{2}\dfrac{14}{\log 14}
- \pi(15)=6 > \dfrac{5}{2} = \dfrac{\log 2}{3 \log 2}\dfrac{15}{2} > \dfrac{\log 2}{2}\dfrac{15}{\log 15}
- \pi(16)=6 > \dfrac{8}{3} = \dfrac{\log 2}{3 \log 2}\dfrac{16}{2} > \dfrac{\log 2}{2}\dfrac{16}{\log 16}
(7) There exists n such that 16 \le 2n < x \le 2n+2
(8) \dfrac{2n}{\log 2n} - \dfrac{n+1}{\log 2n} = \dfrac{n-1}{\log 2n} \ge \dfrac{7}{\log 16} = \dfrac{7}{4\log 2} > \dfrac{4}{4\log 2} = \dfrac{1}{\log 2}
(9) \pi(x) \ge \pi(2n) \ge \log 2\dfrac{2n}{\log 2n} - 1 = \dfrac{2n\log 2 - \log 2n}{\log 2n} = \dfrac{\log\frac{2^{2n}}{2n}}{\log 2n}
(10) for n=8, 2^6 > 8
(11) 2(2^{n-2}) = 2^{(n+1)-2} > 2n > n+1 so that \dfrac{2^{n-2}}{n} > 1 and \dfrac{2^{n-1}}{2n} > 1 and \dfrac{2^{2n}}{2n} > 2^{n+1}
(12) \dfrac{\log\frac{2^{2n}}{2n}}{\log 2n} \ge \dfrac{\log 2^{n+1}}{\log (2n+2)} = \dfrac{(n+1)\log 2}{\log (2n+2)}
(13) Since n+1 = \dfrac{2n+2}{2} \ge \dfrac{x}{2}, it follows that \dfrac{(n+1)\log 2}{\log (2n+2)} \ge \dfrac{x\log 2}{2\log x}
Corollary: For 46 \ge n \ge 4, there are at least n primes between n and n^2
(1) For n \ge 28, then:
- Between 4 and 16, there are 4 primes: \{5, 7, 11, 13\}
- Between 5 and 25, there are 6 primes: \{7,11,13,17,19,23\}
- Between 6 and 36, there are more than 6 primes: \{7,11,13,17,19,23,\dots\}
- Between 7 and 49, there are more than 7 primes: \{11,13, 17, 19, 23, 29, 31,\dots\}
- Between 8 and 64, there are more than 8 primes: \{11, 13,17,19,23,29,31,37,\dots\}
- Between 9 and 81, there are more than 9 primes: \{11,13,17,19,23,29,31,37,41,\dots\}
- Between 10 and 100, there are more than 10 primes: \{11,13,17,19,23,29,31,37,41,43,dotts\}
- Between 11 and 121, there are more than 11 primes: \{13,17,19,23,29,31,37,41,43,47,53,\dots\}
- Between 12 and 144, there are more than 12 primes: \{13,17,19,23,29,31,37,41,43,47,53,59,\dots\}
- Between 13 and 169, there are more than 13 primes: \{17,19,23,29,31,37,41,43,47,53,59,61,67,\dots\}
- Between 14 and 196, there are more than 14 primes: \{17,19,23,29,31,37,41,43,47,53,59,61,67,71,\dots\}
- Between 15 and 225, there are more than 15 primes: \{17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,\dots\}
- Between 16 and 256, there are more than 16 primes: \{17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,\dots\}
- Between 17 and 289, there are more than 17 primes: \{19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,\dots\}
- Between 18 and 324, there are more than 18 primes: \{19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,\dots\}
- Between 19 and 361, there are more than 19 primes: \{23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,\dots\}
- Between 20 and 400, there are more than 20 primes: \{23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,\dots\}
- Between 21 and 441, there are more than 21 primes, \{23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,\dots\}
- Between 22 and 484, there are more than 22 primes, \{23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113\dots\}
- Between 23 and 529, there are more than 23 primes, \{29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,\dots\}
- Between 24 and 576, there are more than 24 primes, \{29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,\dots\}
- Between 25 and 625, there are more than 25 primes, \{29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,\dots\}
- Betwen 26 and 676, there are more than 26 primes, \{29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,\dots\}
- Between 27 and 729, there are more than 27 primes, \$\{29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,\dots\}
(2) \pi(n^2) - \pi(n) \ge \dfrac{(n^2)\log 2}{2\log (n^2)} - \dfrac{(6n)\log 2}{\log n} = \dfrac{(n^2)\log 2}{4\log (n)} - \dfrac{(6n)\log 2}{\log n} = \dfrac{(\frac{n}{4} - 6)(n\log 2)}{\log n}
No comments:
Post a Comment