Theorem 9: Depressed Cubic Equation
If $x^3 + bx = c$, then:
$$x = \sqrt[3]{\frac{c}{2} + \sqrt{\dfrac{c^2}{4} + \frac{b^3}{27}}} + \sqrt[3]{\frac{c}{2} - \sqrt{\dfrac{c^2}{4} + \frac{b^3}{27}}}$$
Proof:
(1) $x^3 = -bx + c$
(2) There exists real numbers $u,v$ such that $x = u + v$
(3) $(u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3 = 3uv(u+v) + (u^3 + v^3)$
(4) Since $b = -3uv$, it follows that $v = \dfrac{-b}{3u}$
(5) $c = u^3 + v^3 = u^3 + \dfrac{-b^3}{27u^3}$
(6) It follows that:
$$u^6 - u^3c + \dfrac{-b^3}{27}= 0$$
(7) Using the solution for the quadratic equation, we have:
$$u^3 = \frac{c \pm \sqrt{c^2 + \frac{4b^3}{27}}}{2} = \frac{c}{2} \pm \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}$$
(8) From the symmetry of the equation, we can assume that:
$$u^3 = \frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}$$
$$v^3 = c - u^3 = c - \frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3} = \frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}$$
(9) $x = u + v = \sqrt[3]{\frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}} + \sqrt[3]{\frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}}$