Processing math: 0%

Monday, April 12, 2021

Solution to the Depressed Cubic Equation

Theorem 9:  Depressed Cubic Equation

If x^3 + bx = c, then:

x = \sqrt[3]{\frac{c}{2} + \sqrt{\dfrac{c^2}{4} + \frac{b^3}{27}}} + \sqrt[3]{\frac{c}{2} - \sqrt{\dfrac{c^2}{4} + \frac{b^3}{27}}}

Proof:

(1)  x^3 = -bx + c

(2)  There exists real numbers u,v such that x = u + v

(3)  (u+v)^3 = u^3 + 3u^2v + 3uv^2 + v^3 = 3uv(u+v) + (u^3 + v^3)

(4)  Since b = -3uv, it follows that v = \dfrac{-b}{3u}

(5)  c = u^3 + v^3 = u^3 + \dfrac{-b^3}{27u^3}

(6)  It follows that:

u^6  - u^3c  + \dfrac{-b^3}{27}= 0

(7)  Using the solution for the quadratic equation, we have:

u^3 = \frac{c \pm \sqrt{c^2 + \frac{4b^3}{27}}}{2} = \frac{c}{2} \pm \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}

(8)  From the symmetry of the equation, we can assume that:

u^3 = \frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}

v^3 = c - u^3 = c - \frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3} = \frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}

(9)  x = u + v = \sqrt[3]{\frac{c}{2} + \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}} + \sqrt[3]{\frac{c}{2} - \sqrt{\left(\frac{c}{2}\right)^2 + \left(\frac{b}{3}\right)^3}}


No comments:

Post a Comment