Theorem 4: Euclid's Lemma
If a prime $p$ divides the product $ab$ of two integers $a$ and $b$, then $p$ divides $a$ or $p$ divides $b$
Proof:
(1) Assume that $p | ab$ but $p \nmid a$
(2) From Bezout's Identity, there exists $r,s$ such that $rp + sa = 1$
(3) Multiply both sides by $b$ to get: $rpb + sab = b$
(4) Since $p | ab$, it follows that $p | b$
Corollary 4.1: Euclid's Generalized Lemma
If a prime $p$ divides $a_1a_2\dots{a_m}$, then $p$ divides $a_i$ where $1 \le i \le m$
Proof:
(1) Base Case: The base case is Euclid's Lemma. If $p | a_1a_2$, then $p | a_1$ or $p | a_2$
(2) Assume that up to $n$ if $p | a_1a_2\dots{a_n}$, then $p|a_i$ with $1 \le i \le n$
(3) Let $b = a_1a_2\dots{a_n}$.
(4) Inductive Case: From Euclid's Lemma, if $p | ba_{n+1}$, then $p | b$ or $p|a_{n+1}$.
No comments:
Post a Comment