Processing math: 3%

Friday, April 9, 2021

Euclid's Lemma

Theorem 4:  Euclid's Lemma

If a prime p divides the product ab of two integers a and b, then p divides a or p divides b

Proof:

(1)  Assume that p | ab but p \nmid a

(2)  From Bezout's Identity, there exists r,s such that rp + sa = 1

(3)  Multiply both sides by b to get:  rpb + sab = b

(4)  Since p | ab, it follows that p | b


Corollary 4.1:  Euclid's Generalized Lemma

If a prime p divides a_1a_2\dots{a_m}, then p divides a_i where 1 \le i \le m

Proof:

(1)  Base Case:  The base case is Euclid's Lemma.  If p | a_1a_2, then p | a_1 or p | a_2

(2)  Assume that up to n if p | a_1a_2\dots{a_n}, then p|a_i with 1 \le i \le n

(3)  Let b = a_1a_2\dots{a_n}.  

(4)  Inductive Case:  From Euclid's Lemma, if p | ba_{n+1}, then p | b or p|a_{n+1}.


No comments:

Post a Comment