Theorem 8: If ax^2 + bx + c=0, then:
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Proof:
(1) x^2 + \dfrac{bx}{a} + \dfrac{c}{a} = 0
(2) x^2 + \dfrac{bx}{a} = -\dfrac{c}{a}
(3) x^2 + \dfrac{bx}{a} + \left(\dfrac{b}{2a}\right)^2 = -\dfrac{c}{a} + \left(\dfrac{b}{2a}\right)^2
(4) \left(x + \dfrac{b}{2a}\right)^2 = -\dfrac{c}{a} + \left(\dfrac{b}{2a}\right)^2
(5) x + \dfrac{b}{2a} = \pm \sqrt{-\dfrac{c}{a} + \left(\dfrac{b}{2a}\right)^2}
(6) x = -\dfrac{b}{2a} \pm \sqrt{-\dfrac{c}{a} + \left(\dfrac{b}{2a}\right)^2} = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
No comments:
Post a Comment